Turning Saccharomyces cerevisiae into a Frataxin-Independent Organism

نویسندگان

  • Heeyong Yoon
  • Simon A. B. Knight
  • Alok Pandey
  • Jayashree Pain
  • Serdar Turkarslan
  • Debkumar Pain
  • Andrew Dancis
  • Josep Casadesús
چکیده

Frataxin (Yfh1 in yeast) is a conserved protein and deficiency leads to the neurodegenerative disease Friedreich's ataxia. Frataxin is a critical protein for Fe-S cluster assembly in mitochondria, interacting with other components of the Fe-S cluster machinery, including cysteine desulfurase Nfs1, Isd11 and the Isu1 scaffold protein. Yeast Isu1 with the methionine to isoleucine substitution (M141I), in which the E. coli amino acid is inserted at this position, corrected most of the phenotypes that result from lack of Yfh1 in yeast. This suppressor Isu1 behaved as a genetic dominant. Furthermore frataxin-bypass activity required a completely functional Nfs1 and correlated with the presence of efficient scaffold function. A screen of random Isu1 mutations for frataxin-bypass activity identified only M141 substitutions, including Ile, Cys, Leu, or Val. In each case, mitochondrial Nfs1 persulfide formation was enhanced, and mitochondrial Fe-S cluster assembly was improved in the absence of frataxin. Direct targeting of the entire E. coli IscU to ∆yfh1 mitochondria also ameliorated the mutant phenotypes. In contrast, expression of IscU with the reverse substitution i.e. IscU with Ile to Met change led to worsening of the ∆yfh1 phenotypes, including severely compromised growth, increased sensitivity to oxygen, deficiency in Fe-S clusters and heme, and impaired iron homeostasis. A bioinformatic survey of eukaryotic Isu1/prokaryotic IscU database entries sorted on the amino acid utilized at the M141 position identified unique groupings, with virtually all of the eukaryotic scaffolds using Met, and the preponderance of prokaryotic scaffolds using other amino acids. The frataxin-bypassing amino acids Cys, Ile, Leu, or Val, were found predominantly in prokaryotes. This amino acid position 141 is unique in Isu1, and the frataxin-bypass effect likely mimics a conserved and ancient feature of the prokaryotic Fe-S cluster assembly machinery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iron Accumulated in Mitochondria of a YFH1 - Mutant of the Yeast Saccharomyces cerevisiae Corresponds to Inorganic Ferric Phosphate

The YFH1 gene is the yeast homologue of the human FRDA gene encoding a protein named frataxin. Mutations of the frataxin gene lead to a decreased frataxin expression causing Friedreich’s ataxia, the most common autosomal recessive neurodegenerative disease of Caucasians [1,2]. A defect in the yeast frataxin homologue leads to several S. cerevisiae phenotypes. Iron uptake is considerably higher ...

متن کامل

Optimization of Culture Conditions for Enrichment of Saccharomyces cerevisiae with Dl-α-Tocopherol by Response Surface Methodology

Designing enriched probiotic supplements may have some advantages including protection of probiotic microorganism from oxidative destruction, improving enzyme activity of the gastrointestinal tract and probably increasing half-life of micronutrient. In this study Saccharomyces cerevisiae enriched with α-tocopherol produced as an accumulator and transporter of a lipid soluble vitamin for the fir...

متن کامل

Optimization of Culture Conditions for Enrichment of Saccharomyces cerevisiae with Dl-α-Tocopherol by Response Surface Methodology

Designing enriched probiotic supplements may have some advantages including protection of probiotic microorganism from oxidative destruction, improving enzyme activity of the gastrointestinal tract and probably increasing half-life of micronutrient. In this study Saccharomyces cerevisiae enriched with α-tocopherol produced as an accumulator and transporter of a lipid soluble vitamin for the fir...

متن کامل

Mitochondrial intermediate peptidase and the yeast frataxin homolog together maintain mitochondrial iron homeostasis in Saccharomyces cerevisiae.

Friedreich's ataxia (FRDA) is a neurodegenerative disease typically caused by a deficiency of frataxin, a mitochondrial protein of unknown function. In Saccharomyces cerevisiae, lack of the yeast frataxin homolog ( YFH1 gene, Yfh1p polypeptide) results in mitochondrial iron accumulation, suggesting that frataxin is required for mitochondrial iron homeostasis and that FRDA results from oxidative...

متن کامل

Flavin Adenine Dinucleotide Rescues the Phenotype of Frataxin Deficiency

BACKGROUND Friedreich ataxia is a neurodegenerative disease caused by the lack of frataxin, a mitochondrial protein. We previously demonstrated that frataxin interacts with complex II subunits of the electronic transport chain (ETC) and putative electronic transfer flavoproteins, suggesting that frataxin could participate in the oxidative phosphorylation. METHODS AND FINDINGS Here we have inv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015